Enhancing Health Sector Crisis Preparedness in The Event of High Intensity Earthquake in the Kathmandu Valley

Emergency WASH Preparedness Training Module for Health Facilities

Prepared by
Environment & Public Health Organization
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHW</td>
<td>Auxillary Health Workers</td>
</tr>
<tr>
<td>ANM</td>
<td>Auxillary Nurse Midwives</td>
</tr>
<tr>
<td>DM</td>
<td>Disaster Management</td>
</tr>
<tr>
<td>DMC</td>
<td>Disaster Management Committee</td>
</tr>
<tr>
<td>ENPHO</td>
<td>Environment and Public Health Organization</td>
</tr>
<tr>
<td>E-WASH</td>
<td>Emergency Water Sanitation and Hygiene</td>
</tr>
<tr>
<td>FCHVs</td>
<td>Female Community Health Volunteers</td>
</tr>
<tr>
<td>V-WASH CC</td>
<td>VDC level Water, Sanitation and Hygiene</td>
</tr>
<tr>
<td></td>
<td>Coordination Committee</td>
</tr>
<tr>
<td>WASH</td>
<td>Water Sanitation and Hygiene</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Contents

Acronyms 3

1. Introduction 1
 1.1 Rational of Training 1
 1.2 Goal 1
 1.3 Objective 2
 1.4 Target audience 2
 1.5 Expected outcome 2
 1.6 Duration 3

2. Training course schedule 5

3. Training course schedule and session objectives

4. Learning session: Day1 8
 4.1 Disaster Terminology, Disaster Management Cycle, Sphere Standard 9
 4.2 Epidemiological Management During Emergency 13
 4.3 Solid/ Medical Waste Management 17

5. Learning Session: DAY 2 20
 5.1 Drinking Water Quality, Treatment and Hygiene 20
 5.2 Practical on Drinking water quality, treatment and hygiene 28
 5.3 Sanitation, its importance, type and its use during emergency 29
 5.4 Practical on toilet construction during emergency 31

6. Learning Session: DAY 3 32
 6.1 Simulation 32

7. Annex 34
 7.1 Pre-test and Post-test question 34
 7.2 Disaster Cycle Points for Preparing DM Cycle 36
 7.3 Disaster Terminology 36
1.1 Rational of Training

If there is a major earthquake and the existing water storage facilities are inadequate to meet the current or expected demands. The existing water supply pipe lines are vulnerable and basic WASH materials are lacking to meet the demand in the event of an earthquake. Preparedness and response capacities of health facilities are insufficient due to the lack of trained professional human resources, lack of coordination and inadequate policies. Issues at Health Sector level include the lack of health personnel preparedness for hazards other than epidemics, lack of awareness and knowledge on DRM, the lack of implementation of the health disaster preparedness and response plans, and no mechanism for networking and resources sharing.

1.2 Goal

The goal of the training is to build capacity of maintenance, housekeeping staff, health facilities staffs and relevant stakeholders on emergency WASH. Orient participants on stockpiled emergency water supply, sanitation and hygiene materials items to ensure water and sanitation system function after an earthquake.
1.3 Objective

- To provide detail knowledge on WASH in emergency;
- To provide hands-on practical training on Emergency WASH;
- To practice prepared E-WASH plan on field, Simulation of Emergency layout plan (identify gap);

1.4 Target audience

Health institution staffs including AHW, ANM, FCHV’s, Office assistants, community stakeholders i.e., V-WASH CC, water users groups, DMC members

1.5 Expected outcome

- Participants will be able to understand E-WASH plan for their respective health institution;
- Participants will be able to construct emergency toilet;
- Participants will be able to prepare chlorine solution for mass water disinfection;
- Participants will be able to understand their roles during emergency response;

1.6 Duration

3 days including two days theoretical session and third day Drill/ Simulation
Training Course Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Facilitator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30am-09:15am</td>
<td>Breakfast + Registration</td>
<td></td>
</tr>
<tr>
<td>09:15am-10:00am</td>
<td>Introduction + Objective of training</td>
<td></td>
</tr>
<tr>
<td>10:00am-12:45am</td>
<td>Conceptual framework design and discussion of emergency WASH preparation / Disaster terminology + Disaster Management Cycle</td>
<td></td>
</tr>
<tr>
<td>12:45pm-01:00pm</td>
<td>Session evaluation</td>
<td></td>
</tr>
<tr>
<td>01:00pm-02:00pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>02:00pm-03:30pm</td>
<td>Epidemiological management during Emergency</td>
<td></td>
</tr>
<tr>
<td>03:30pm-03:45pm</td>
<td>Tea break</td>
<td></td>
</tr>
<tr>
<td>03:45pm-04:45pm</td>
<td>Solid/ medical waste management</td>
<td></td>
</tr>
<tr>
<td>04:45pm-05:00pm</td>
<td>Session evaluation and review</td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30am-10:45am</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td>10:45am-11:00am</td>
<td>Review of Day 1</td>
<td></td>
</tr>
<tr>
<td>11:00am-12:45pm</td>
<td>Drinking water quality, treatment and hygiene.</td>
<td></td>
</tr>
<tr>
<td>12:45pm-1:30pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1:30pm-3:30pm</td>
<td>Practical session + discussion</td>
<td></td>
</tr>
<tr>
<td>3:30pm-3:45pm</td>
<td>Session evaluation + break</td>
<td></td>
</tr>
<tr>
<td>3:45pm-4:30pm</td>
<td>Sanitation and its importance, toilet type and its use during emergency + Toilet construction (theory + practical)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Facilitator</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>4:30pm-5:00pm</td>
<td>Session Evaluation</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30am-9:45 am</td>
<td>Registration / gather</td>
<td></td>
</tr>
<tr>
<td>9:45am-10:15am</td>
<td>Reach at site/field (Changunarayan)</td>
<td></td>
</tr>
<tr>
<td>10:15am-11:15am</td>
<td>Orientation for Simulation</td>
<td></td>
</tr>
<tr>
<td>11:15am-2:00pm</td>
<td>Simulation exercise</td>
<td></td>
</tr>
<tr>
<td>02:00pm-03:00pm</td>
<td>Cleaning and packing of materials</td>
<td></td>
</tr>
<tr>
<td>03:00pm-03:45pm</td>
<td>Break for discussion</td>
<td></td>
</tr>
<tr>
<td>03:45pm-04:30pm</td>
<td>Experience sharing</td>
<td></td>
</tr>
<tr>
<td>04:30pm-05:00pm</td>
<td>Closing</td>
<td></td>
</tr>
</tbody>
</table>
Session Schedule and Session Objectives

<table>
<thead>
<tr>
<th>Session title</th>
<th>Duration</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training opening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welcome and introduction</td>
<td>30 minute</td>
<td>▪ To create a common base of understanding project background and its importance in Health sector;</td>
</tr>
<tr>
<td>Objective of training</td>
<td>10 minute</td>
<td>▪ To set the 3 days training objectives</td>
</tr>
<tr>
<td>Expectation Collection</td>
<td>5 minute</td>
<td>▪ To reveal their expectations from 3 days training</td>
</tr>
<tr>
<td>Pre- test</td>
<td>15 minute</td>
<td>▪ To get basic understanding of participants on the training content</td>
</tr>
<tr>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disaster terminology, Disaster Management Cycle, Sphere standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disaster terminology and Disaster</td>
<td>45 minute</td>
<td>▪ To make participants familiar with disaster terminologies;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ To make participants able to understand disaster, its causes and its consequences;</td>
</tr>
<tr>
<td>Disaster Management Cycle, Sphere Standard</td>
<td>30 minute</td>
<td>▪ To introduced Disaster management cycle and identify difference between existing disaster response;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ To discuss activities related to WASH in each steps of DM cycle.</td>
</tr>
<tr>
<td>Lunch Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session title</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Epidemiological Management During Emergency</td>
<td>90 minute</td>
<td>- To make participants able to understand importance of epidemiological management during emergency;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To familiarize participants with epidemic surveillance and its process and identify roles during epidemiological management;</td>
</tr>
<tr>
<td>Tea Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid/ medical waste management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid/ medical waste management</td>
<td>60 minute</td>
<td>- To introduce participants on medical waste management during emergency;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To discuss on effects of medical waste and steps of waste management;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To introduce possible methods/techniques of medical waste management;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To discuss on advantage and disadvantage of these waste management techniques;</td>
</tr>
<tr>
<td>Day 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking water quality, treatment and hygiene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water, water quality and health effects</td>
<td>40 minute</td>
<td>- To discuss on water sources, cause of water pollution;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To introduce different physical, chemical and biological water quality parameters and their effects on health;</td>
</tr>
<tr>
<td>Emergency treatment of drinking water during disaster</td>
<td>40 minute</td>
<td>- To introduce Water treatment option on mass scale;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To discuss on Chlorination and its concentration for different purposes;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To aware participants on chlorination facts and points to be considered/taken care of;</td>
</tr>
<tr>
<td>Hygiene practice during emergency</td>
<td>40 minute</td>
<td>- To share on Hygiene and personal hygiene practices at health centers;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- To discuss on the challenges on maintaining hygiene; To identify importance of hygiene at health centers; To introduce participants on preparation of chlorine solution on different concentration;</td>
</tr>
<tr>
<td>Session title</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Lunch Break</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td>Practical on drinking water quality, treatment and hygiene</td>
<td>120 minute</td>
<td>• To provide hands-on training on using water test kit, preparing chlorine solution</td>
</tr>
<tr>
<td>Break</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td>Sanitation, its importance, type and its use during emergency</td>
<td>30 minute</td>
<td>• To provide basic knowledge on importance of Sanitation;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To introduce feco-oral transmission route, water induced disease during disaster, sanitation ladder, relation between sanitation and health and Sphere standards for toilet construction;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To introduce options on toilets types for emergency and points to be noted during emergency toilet construction;</td>
</tr>
<tr>
<td>Practical on toilet construction during emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical session</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>30 minute</td>
<td>• To orient participants on temporary emergency toilet;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To provide hands on training on construction of temporary emergency toilet.</td>
</tr>
<tr>
<td>Day 3</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td>Simulation</td>
<td>Duration</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>300 minute (5 hours)</td>
<td>• To work practically on field to identify gap on proposed plan.</td>
</tr>
</tbody>
</table>
Welcome and Introduction (30 minutes)
Organize the welcome session either formally or informally. Proceed for introduction with interesting methodology including team building games.

Team Building

Snowballing
Distribute A4 paper sheet among all participants, including organizer/facilitator team. Instruct participants to write down following information: name, address, organization, hobbies, most memorable incident and participation on any Disaster / Emergency WASH training before. Request them to form a big circle, ask them to make a ball of the given paper and throw within circle targeting any one participant. Similarly ask participants to recollect any paper ball in front of them and throw among participants. Repeat the process twice or thrice, finally instruct each participant to collect one ball and take seat. Voluntarily ask any one participant (A) to read the content of the collected ball while ask participants (B) to stand while introduction is going on. Similarly, continue the introduction round till last paper ball has been open.

Material required: A4 paper, dot pens/marker

Expectation Collection (5 minutes)
Provide metacard to each participants and ask individual participant to reveal their expectations from training in a metacard.
Material required: metacard, permanent marker, glue stick/masking tape, chart paper

Objective of Training (10 minutes)
Briefly set the program objectives through presentation including project information and updates.

Pre-test (15 minutes)
Provide printed pre-test forms to all participants, pre and post-test sample questions are attached at annex.
Material required: pre-test print paper.

Tea break: 15 minute

4.1 Disaster Terminology, Disaster Management Cycle, Sphere Standard

Disaster Terminology and Disaster:

Session Objective:
- Participants will get familiar with disaster terminologies;
- Participants will be able to understand disaster, its causes and its consequences.

Session Duration : 45 minutes

Methodology
- Show a video clips to sensitize the participants and prepare for the upcoming contents
- Initiate with general discussion with term “disaster” and other terms related to disaster,
- Note down the terms at newsprint;
- Furthermore divide participants into groups and provide them terms and their meaning, instruct them to match terms with their meaning (time limit: 10 minutes)
After completing the task, make presentation including the terms and their meaning. Have open discussion with participants. Make your presentation on Nepali language.

Materials required for this session: Videos, projector, Terminology and meaning print out sheet, presentation slide, masking tape, Glue stick, markers and newsprint

Hazard: A rare or extreme natural or man-made trigger event that threatens to adversely affect human life, property or activity to the extent of causing disaster.

Disaster: Any event that causes damage, ecological disruption, loss of human life, or deterioration of health and health services on a scale sufficient to warrant an extraordinary response from outside the affected community.

Vulnerability: The level of disruption and loss a hazard can potentially cause in a community / society. Or people with comparatively low coping capacity during any disaster. There are three elements of vulnerability: Physical and material vulnerability, social and organizational vulnerability, motivational and attitudinal vulnerability.

Capacity: Any sources, tools, properties, energy or power that individual, organization, community bears and can be used to tackle, prevent and mitigate any disaster. Or the ability of human beings to mitigate or cope with the combined effect of hazard and vulnerability is called capacity. There are three elements of capacity: Physical and material capacity, social and organizational capacity, motivational and attitudinal capacity.

Response: Actions taken during and immediately after the occurrence of an event, to ensure that disaster effects are minimized and people are given immediate relief and support.

Risk: The probability or threat of quantifiable damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through proactive action.

Recovery: The coordinated process of supporting disaster-affected communities in reconstructing their physical infrastructure and restoration of emotional, social, economic, and physical well-being. There are two stage of recovery i.e., rehabilitation and reconstruction.
What is disaster?

Disaster is the state of emergency where suddenly life of group of people/ community gets into trouble. They have to face with lots of pain and trauma. Basic need like food, cloth and shelter also becomes difficult to supply. There are different effects of disaster like: Human, economic, environmental, geographic, social, physical infrastructure and psychological effects.

Nepal is ranked at 11th disaster prone area in terms of Earthquake, 30th in terms of water induces disaster. Kathmandu Valley is ranked at 1st position in terms of earthquake.

\[
\text{Disaster Risk} = \frac{(\text{Hazard}) \times (\text{vulnerability})}{(\text{Capacity})}
\]

Disaster Management Cycle, Sphere standard

Session Objective:
- Participants will be introduced to Disaster management cycle and will be able to identify difference between existing disaster response practice and DM cycle;
- To discuss activities related to WASH in each steps of DM cycle.

Session Duration: 30 minutes

Methodology:
- Divide participants into three/ four groups;
- Provide contents of Disaster Management (DM) Cycle, i.e., Preparedness, Mitigation, Prevention, Rehabilitation, Reconstruction, Search and rescue; written on meta-card to each group;
- Instruct participants to arrange those cards: as activities to be done before and after disaster and present that as steps of disaster management cycle;
- Discuss with participants regarding the activities that should be conducted at each steps of DM cycle with open discussion (facilitator can take this session with or without power point presentation)

Materials required: set of metacard with content of DM Cycle, brown paper, masking tape, markers.
Disaster Management Cycle
Disaster Management cycle is divided into two levels i.e., activities/steps to be conducted before and after disaster. Activities like prevention, mitigation and preparedness are conducted before hand of disaster and Activities of search and rescue, rehabilitation and reconstruction are conducted after disaster. Key messages: community is first responder after disaster. (Refer Annex 7.2 for Disaster Cycle Points for Preparing DM Cycle)

Disaster Cycle

Activities to be conducted before disaster:
Prevention: It focuses on preventing the human hazard, primarily from potential natural disasters. Preventive measures are taken on both the domestic and international levels, designed to provide permanent protection from disasters.

Mitigation: Structural and non-structural measures undertaken to limit the adverse impact of natural, human-generated, or technological hazards.

Preparedness: Arrangements to reduce suffering, immediate and long-term avoidable mortality, morbidity and disability in any type of emergency and to build a bridge to development is called preparedness.

Activities to be conducted after disaster:
Search and rescue: The search for and provision of aid to people who are in distress or imminent danger
Rehabilitation and Reconstruction: These are two phase of recovery. Recovery is the coordinated process of supporting disaster-affected communities in reconstructing their physical infrastructure and restoration of emotional, social, economic, and physical well-being.

Session evaluation
Session evaluation can be conducted in each session through presentation or simple quiz relating to the session conducted before as per time limit.

Lunch Break: 45 minutes

4.2 Epidemiological Management During Emergency

Session Objective:
- Participants will be able to understand importance of epidemiological management during emergency;
- Participants will be familiar with epidemic surveillance and its process and identify roles during epidemiological management;

Session Duration: 90 minutes

Methodology:
- Initiate with general discussion about disaster with some facts or images/charts, data.
- Introduce participants regarding disasters and situation of Nepal during disaster.
- Raise question to participants regarding effects of disaster in public health after negligence in WASH.
Discuss on importance of epidemiological management.
Familiarize participants with Outbreak investigation and its objective; Steps of investigation; some facts and data can also be shared at this session.
Management of epidemics; Surveillance and its process during emergency.

Materials required for this session: Projector, presentation slide, masking tape, markers and newsprint

Example:
Jaundice Epidemic in Biratnagar
- The OPD cases of jaundice started reporting from 23rd April (Baisakh 10, 2071)
- By the end of 30th May 2014 (Jestha 16) there were reported 1991 morbidity cases and the causal mortality (deaths) was 12. (DPHO, Biratnagar)

Suspected causes:
1. No proper drainage system
2. Contaminated water
3. Street food festival (April 18-19)
4. Kumbha mela at baraha chhetra ended on April 30
5. Imported raw fruits and vegetables from India.

What happens in emergencies?

- Mass displacement
- Destruction of essential services
- Overcrowding and Chaos
- Lack of safe drinking water
- Lack of sanitation facilities
- Scarcity of food
- Loss of essential nonfood items

People start using whatever is available

- Risk practices
- Increased exposure to disease pathogens

- Increased causes of communicable diseases
- Epidemics and death
How Do People Get Infected (Epidemiological Triage)

Causes of epidemics and death
The causes of epidemics and death are categorized into three sub causes:
- Immediate causes
- Underlying causes
- Structural causes

Linkages between these three causes are shown below:

1. **Immediate cause**
 - Malnutrition
 - Disease and death
 - Susceptibility to pathogens

 - Household food security: Availability and access to food
 - Social and care environment: Behavior, women's status, social, organization, coping, mechanisms
 - Health environment: Access to health care, Water, Sanitation, Shelter

2. **Underlying cause**
 - Disaster response intervention by Governments, UN, INGOs and NGOs
 - Political values, ideas, belief, human rights, policies
 - Formal informal infrastructure: Health, Water, Sanitation, Civil society, transport
 - Resources: Human, Financial, Structural, Social

3. **Structural cause**
 - Vector
 - Rodents
Difference between epidemic and endemic

Epidemic: An epidemic occurs when new cases of a certain disease, in a given human population and during a given period, substantially exceed what is expected based on recent experience.

Endemic: Endemic in a population when that infection is maintained in the population without the need for external inputs.

Effects of Disaster in Public Health after negligence in WASH

- Environmental Health
- Occupational Health
- Injury and Trauma
- Mental Health / Behavioral Health
- Reproductive Health

Outbreak investigation and its objective

- To control ongoing outbreaks
- To prevent future outbreaks
- To provide statutorily mandated services
- To strengthen surveillance at local level
- To advance knowledge about a disease

Steps of an outbreak/epidemiological investigation

- Confirm existence of an outbreak/epidemic (clinical & laboratory) – confirm diagnosis
- Establish a working case definition for the outbreak
- Identify, count number of cases & determine size of population at risk (to calculate attack rate)
- Look for additional cases & follow up contacts
- Develop and test hypothesis
- Implementation of control measures
- Write a report with recommendations

Surveillance

Surveillance is the ongoing systematic collection, analysis and interpretation of data; and the dissemination of information to those who need to know in order that action may be taken. Surveillance is the monitoring of the behavior, activities, or other changing information, usually of people for the purpose of influencing, managing, directing, or protecting them.

Tea Break: 15 minutes
4.3 Solid/ Medical Waste Management

Session Objective:
To introduce participants on medical waste management during emergency;
To discuss on effects of medical waste and steps of waste management;
Introduce possible methods/ techniques of medical waste management;
Discuss on advantage and disadvantage of waste management techniques;

Session Duration : 60 minutes

Methodology:
- Initiate with discussion on existing medical waste management practices.
- Divide participants onto three groups and provide metacards to each team.
- Instruct team one to write down different types of medical waste as much as they can on metacards; team two to segregate those metacards (different types of waste) and team three to manage them. Let them work as per their idea and practice.
- Present about effects of medical waste.
- Present on steps of waste management: segregation, storage, transportation and disposal.
- Discuss with participants on different possible medical waste management techniques along with their merits and de-merits.
- Have open discussion with participants to get their ideas and views regarding these techniques.

Materials required for this session: projector, presentation slide, masking tape, markers and newsprint.

Different types of waste generated from health care institute:
Infectious sharps (like syringe, needles, blades, glass and other contaminated materials) or non-infectious sharps (like bandages, gauzes or items soaked in blood)

Improper handling and disposal of HCW can have direct impacts. Like it could potentially cause risk due to the disposed toxic chemicals or reuse of contaminated syringes if they are accessible to public.

It can also have adverse impacts on human health and environment by polluting air and water bodies.

Steps of waste management:
- Segregation;
- Storage;
- Transportation and
- Disposal

Some possible waste management techniques:
- Pit method;
- Encapsulation;
- Drum incinerator
- Chemical methods

Pit method:
- To manage infectious non-sharps health care waste.
- In this method, infectious non-sharps health care waste are kept in a pit and immediately covered with lime and soil.

Encapsulation:
- For the treatment of sharps.
- In this process sharps are placed within high density polyethylene containers or metal drums up to three quarters full.
- An immobilizing material such as plastic foam, sand, cement or clay is added. Once dry, the containers are sealed and disposed of in landfill sites or waste burial pits.
The following proportions are recommended: 65% pharmaceutical waste, 15% lime, 15% cement, 5% water.

Incineration (Drum incinerator)
- Waste is completely combusted at high temperatures (over 1000°C) and under controlled air-flow,
- One of the few technologies with which all types of health-care waste can be treated properly and can result in a significant reduction in the volume and weight of the wastes treated.

Chemical treatment
It is suitable mainly for treating liquid infectious wastes such as blood, urine, faeces or hospital sewage. Typically, a 1% bleach (sodium hypochlorite) solution or a diluted active chlorine solution (0.5%) is used.
5.1 Drinking Water Quality, Treatment and Hygiene

Water, water quality and health effects:

Session Objective:
- To discuss on water sources; cause of water pollution;
- To introduce different physical, chemical and biological water quality parameters and their effects on health;

Session Duration: 40 minutes

Methodology:
- Start the session with general discussion on water sources, uses and causes of water pollution which will make participants familiar with upcoming topics/ content.
- Enter into water quality session through presentation introducing water quality parameters i.e., physical, chemical and biological parameters with short definition, its guideline values and effects on health.

What is pH:
PpH value is the indicator of the intensity of the acidic or basic nature of water. Water becomes acidic or alkaline properties depending on the type of substance contact with it.
Effect of pH:
- pH value above 8 gives an alkaline taste.
- Below 4 gives a sour taste.
- Water having higher value (above 8) increases scale formation in apparatus and decreases chlorinating efficiency.
- Low pH value (below 6.5) causes corrosion in the distribution system of water supply.
- WHO Standard for pH: 6.5-8.5

Ammonia:
Ammonia pollution in water is mainly due to the human activities and natural decay. WHO Standard for ammonia is 1.5 mg/L.

Health Effect of Ammonia:
- Higher contamination of ammonia is harmful for fish and other biota and even human being.
- The toxicity of ammonia increases with the increase of pH value. Because at higher pH most of ammonia remains in the gaseous form which is more toxic.
- The decrease in pH decreases its toxicity due to conversion of ammonia to ammonium ion, which is less toxic than the gaseous form.

Iron:
Depending upon the geology of the area and other component of the waterway Iron may present in water in varying quantities. WHO Standard for iron is 0.3 mg/L.

Health effect of iron:
- Iron is little concern as a health hazard but a nuisance in excessive quantities.
- Higher iron concentration water:
 - Cause staining of clothes and utensils.
 - Not suitable for processing food, beverage, ice, dyeing, bleaching and many items.
 - Gives a black inky appearance with metallic test in preparation of tea and coffee.
 - May cause vomiting.

Nitrate:
Nitrate Pollution is due to the oxidation of organic nitrogenous substance. WHO Standard for nitrate is 1.5 mg/L.
Health effect of nitrate:
- Continue consumption of more than 50 mg/L may cause Methamoglobinemia (Blue baby Syndrome) may cause death of infant.

Chloride:
Chloride pollution in water is mainly due to the human activities like domestic waste, Industrial waste etc.

Health effect of chloride:
High chloride can corrode metals and affects the taste of food.

Phosphorous:
Phosphorous pollution in water is mainly due to the domestic sewage and decaying vegetable matters. WHO Standard for phosphorous is 500 mg/L.

Health effect:
- Phosphorous is not harmful to the organism but its analysis is useful for pollution study.
- Phosphorous as a phosphate is an essential element for life as a nutrient and as a key element in the metabolic process of all living organisms.
- In case of excess phosphate it stimulates or promotes algal bloom
- It may lead to rapid eutrophication especially in lakes, reservoir and ponds.

Hardness:
Water hardness is the traditional measure of the capacity of water to react with soap. Water hardness in water is caused by mainly calcium and magnesium cation.

Health effect:
- There is no any convincing evidence that water hardness causes adverse health effects in human. But clog supply pipe line.

Micro-bacterial contamination and diseases:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Disease causing microorganism</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td>Rotavirus</td>
<td>Diarrhoea</td>
</tr>
<tr>
<td></td>
<td>Hepatitis A virus</td>
<td>Jaundice</td>
</tr>
<tr>
<td></td>
<td>Entrovirus</td>
<td>Meningitis</td>
</tr>
<tr>
<td></td>
<td>Poliovirus</td>
<td>Polio</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
<td>Diarrhorea</td>
</tr>
<tr>
<td></td>
<td>salmonella typhi</td>
<td>Typhoid</td>
</tr>
<tr>
<td></td>
<td>salmonella paratuphi</td>
<td>Paratyphoid</td>
</tr>
<tr>
<td></td>
<td>shigella sp.</td>
<td>Dysentery</td>
</tr>
<tr>
<td></td>
<td>Salmonella sp.</td>
<td>Cholera</td>
</tr>
<tr>
<td></td>
<td>vibrio cholerae</td>
<td></td>
</tr>
</tbody>
</table>
Microorganism Disease causing microorganism Diseases

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Disease causing microorganism</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>Giardia Entamoeba hystalytica</td>
<td>Giardia Amoebiosis</td>
</tr>
</tbody>
</table>

Emergency treatment of drinking water during disaster:

Session Objective:
- To present on detail process of water treatment;
- To introduce Water treatment option on mass scale;
- To discuss on Chlorination and its concentration for different purposes;
- To aware participants on chlorination facts and points to be considered/taken care of;

Session Duration: 40 minutes

Methodology:
- Initiate session with open discussion on process of water purification, i.e., straining, sedimentation, filtration, disinfection and continue the session by explaining each process in detail.
- Include definition, types, different methods etc.
- Orient participants on method/steps of preparing chlorine solution, its required concentration.
- Aware participants on facts of chlorination and points to be take care of/noted.

Materials required for this session: projector, presentation slide, markers.

Straining and aeration:
- Pouring water through a clean cotton cloth will remove suspended silt and solids.
- The cloth must always be used with the same surface uppermost.
- The cloth may be cleaned using soap and clean water.

Aeration increases the oxygen content of water, removes volatile substances affecting
taste and odor, reduce carbon dioxide content, hydrogen sulfide and methane. Some dissolved minerals precipitate due to oxidation and can be removed by sedimentation and filtration.

Sedimentation:
Suspended solids and some pathogens will settle to bottom of container. According to the WHO, after 24 hours of storage in a sterile container, up to 50% of bacteria die.

Filtration:
Process of natural cleansing of water through sand or other porous material is termed as filtration.

Disinfection:
Storage, sedimentation and filtration of water reduce the contents of harmful bacteria but none of them can guarantee the complete removal of germs. Disinfection is a treatment process that ensures drinking water is free from harmful organisms or pathogens. There are various methods of achieving disinfection at household level: Disinfection by boiling, disinfection by using chlorine, solar disinfection (SODIS) and other water treatment chemicals.

How to prepare chlorine solution:
- Take 40 grams of bleaching powder in a litre of jug/vessel.
- Add little water to make a paste.
- Add 1 litre of water on the prepared paste;
- Leave the solution for five minute to settle down.
- Pour the clear solution into colorful vessel and store it properly.
- Hence, we can get chlorine solution of 1% concentration.
- Thus prepared chlorine solution can be used as per requirement considering volume of water in a vessel e.g., One glass of 1% chlorine solution can disinfectant 1000 litre of water; 1 litre of 1% chlorine solution can disinfectant 10,000 litre of water;
- It should be left for 30 minutes before drinking.
- After leaving for 30 minutes, water should have chlorine concentration of 0.2-0.5 mg/L as free residual chlorine.

Free residual chlorine:
Chlorinate water should have free residual chlorine of 0.2-0.5 mg/lit. Low concentration of chlorine doesn’t kill bacteria and high concentration of chlorine in water disturbs its odor.

Some facts about Chlorine
- Water should be distributed after 30 minutes of chlorination.
- Although hypochlorous acid readily reacts with pathogens in water, correct use is essential for maximum effectiveness and safety.
- The effectiveness of chlorine is controlled by pH, temperature, contact time, and dose.
- Neutral pH (6.5 to 7.5) produces the maximum amount of hypochlorous acid. If the pH of the water is too low (pH < 6.0), chlorine will escape as a gas, decreasing effectiveness and increasing equipment corrosion.
- If chlorine is added to an alkaline water (pH > 8.5), the amount of hypochlorous acid formed will be greatly reduced, and the water will not be disinfected.

Hygiene practice during emergency

Session Objective:
- To share on Hygiene and personal hygiene practices at health centers;
- To discuss on the challenges on maintaining hygiene;
- To identify importance of hygiene at health centers;
- Introduce participants on preparation of chlorine solution on different concentration;

Session Duration: 40 minutes

Methodology:
- Initiate session with general discussion on importance of maintaining hygiene during emergency.
- Discuss on the challenges that health centers face maintaining hygiene.
- Present on the hygiene practice at health facility at different points like at entry and exit, at admission point, during hospitalization, at floor etc.
- Discuss on chlorine concentration for different use at health facilities.

Materials required for this session: projector, presentation slide, markers.
The main objective of water, sanitation and hygiene programs in disasters is to reduce risk factors to prevent and control disease outbreaks.

Risk:
- Faeco-oral transmission of disease (can easily spread in overcrowded unsanitary conditions during emergencies.
- Exposure to disease-bearing vectors.
- Good hygiene practices & the provision of safe drinking water is important to ensure good health.
- Awareness on Hygiene
- Construction of infrastructures alone is not enough.
- Awareness of hazards, disease prevention and preparedness to act is important
- Hygiene education to all medical and non-medical staff to keep everyone aware of the rules related to hygiene and the dangers of not adhering to them.
- Prevention is of major concern rather than treatment in awareness programs.
- Effect of disease is not only limited to the patient, but the family and community too.

Health Centers and Hygiene:
- Health care facilities play vital role during emergencies
 - Providing essential medical care to the sick
 - Resource centre for prevention
 - Early warning network of communicable disease
 - Its effective functioning depends upon different requirements including safe and sufficient water along with application of correct hygiene practices.

If not,
- Health care facilities could become the epicentre of outbreaks of diseases.
- Inadequate sanitation also means risks of infection to health personnel.

Challenges:
- Significant increase no. of patients during emergencies
- Insufficient number of toilets, bathing facilities and handwashing stations to cope with demand
- Short supply of disinfectants, detergents, soaps and cleaning materials.
- Inadequate electricity affecting water provision, sterilization and laundering services.
Hygiene and Chlorine
- Chlorination is most common method of disinfection in emergency WASH measures.
- Chlorine solution has multiple functions:
 - Safeguarding drinking water from microbes
 - Disinfection at entrances and exits of health care
 - Washing solutions for hands, clothes, utensils, health care equipments
 - Disinfection of working areas
 - Disinfection of infectious waste, excreta, body fluids.

Hygiene at Health Centres
- At entry/exit points
 - A footbath or preferably a guard with sprayer employed for spraying and disinfecting feet.
 - Footbaths are trays with cloth or sponge soaked in 0.2 % chlorine solution
- Cloth/ sponge changed twice per day or when the cloth appears dirty.
- The spraying also makes the staff and visitors aware of the contamination they are potentially bringing into the different areas.

At admission points
- Disinfection of patients and caregivers feet and shoes using 0.2% chlorine solution by sprayer or footbath while entering patient entrance area
- Hand-washing at entrance/exits with a 0.05% chlorine solution.
- Disinfection of the patient’s transportation:
 - 0.05% solution for stretchers and beds or
 - 0.2% for vehicles.
- Wash patient and caretaker clothes in a 0.05% solution for 30 minutes, then rinse with clean water and dry under the sun.
- Avoid washing infected clothes close to water sources like rivers streams and or wells.
- Restrict and control movements into and within the wards as much as possible.
- Restrict admission and care to one caretaker per patient.

Preparation of Chlorine Solution:

<table>
<thead>
<tr>
<th></th>
<th>0.05%</th>
<th>0.20%</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablets (70% active chlorine)</td>
<td>1 table spoon in 20 litres of water</td>
<td>1 table spoon in 5 litres of water</td>
<td>2 table spoons in 1 litre of water</td>
</tr>
</tbody>
</table>
Emergency WASH Preparedness
Training Module for Health Facilities

<table>
<thead>
<tr>
<th>Amount of chlorine bleach per gallon of water</th>
<th>Approx. concentration of total chlorine (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Teaspoon</td>
<td>65</td>
</tr>
<tr>
<td>1 Tablespoon</td>
<td>200</td>
</tr>
<tr>
<td>1 Fluid ounce</td>
<td>400</td>
</tr>
<tr>
<td>1/4 cup</td>
<td>800</td>
</tr>
<tr>
<td>1/2 cup</td>
<td>1600</td>
</tr>
<tr>
<td>2/3 cup</td>
<td>2200</td>
</tr>
<tr>
<td>3/4 cup</td>
<td>2400</td>
</tr>
<tr>
<td>1 cup</td>
<td>3200</td>
</tr>
</tbody>
</table>

Assuming 5.35% sodium hypochlorite in chlorine bleach

Lunch break: 45 minute

5.2 Practical on Drinking water quality, treatment and hygiene

Session Objective:
- To provide hands-on training on using water test kit, preparing chlorine solution

Session Duration: 120 minutes

Methodology:
- Make participants prepared about upcoming practical session reviewing some points from previous theoretical session.
- Provide participants with all the required materials for practical sessions and introduce the equipment/tools that are being used.
5.3 Sanitation, its importance, type and its use during emergency

Session Objective:
- To provide basic knowledge on importance of Sanitation;
- Introduce feco-oral transmission route; water induced disease during disaster; sanitation ladder;
- Relation between sanitation and health and Sphere standards for toilet construction;
- Introduce options on toilets types for emergency; point to be noted during emergency toilet construction;

Session Duration: 30 minutes

Methodology:
- Initiate session with basic discussion on sanitation, relation between sanitation and health, water induced disease.
- Make your presentation more pictorial with open discussion making session participatory.
- Make note to some major points for disaster like: access, safety, security, different options for different geographic condition, socially and culturally accepted, easy for operation and maintenance, child friendly, disable friendly, gender friendly.

Materials required for this session: projector, presentation slide, markers.
Feco-oral transmission route:

- Hand washing with soap
- Safe drinking water
- Use of toilet

Techniques of being safe from diarrheal disease

- Reduction of diarrheal disease by 39% due to safe drinking water
- Reduction of diarrheal disease by 45% due to hand washing practice
- Reduction of diarrheal disease by 32% due to use of toilet

As per Sphere standard, following points should be considered before emergency toilet construction:

- Toilet should be constructed at distance of 30 meter from water station/source and should be 1.5 meter away from underground water source.
- Toilet constructed should not be in distance more than 50 meter from camp/shelter.
- Toilet should be constructed in the ratio of 1:20 per person.
5.4 Practical on toilet construction during emergency

Session Objective:
- To orient participants on temporary emergency toilet
- To provide hands on training on construction of temporary emergency toilet.

Session Duration: 30 minutes

Methodology:
- Start session with materials required for construction, its background and measurements.
- Introduce formula to delineate pit size among participants.

 Volume of pit \(V \) = \(\frac{(N \times S \times D)}{1000} + 0.5A \)

 Where,
 - \(N \) = number of people using toilet
 - \(S \) = sludge collection rate (L/person/year)
 - \(D \) = using duration (years)
 - \(A \) = area of pit \(A = \pi r^2 \) (m²)

Materials required for this session: projector, presentation slide, markers, bamboo, tarpaulin sheet, wire, nail, hammer, easy/ temporary toilet pan, measuring tape, rope and hacksaw.

Note: Before ending day, pre-inform participants regarding field/ simulation area. Ask all to bring at least bottle water, umbrella or raincoat, wear comfortable dress and shoes.
6.1 Simulation

Step 1: Orientation on Simulation:
- Brief about the simulation in short with participants to prepare;
- Brief participants regarding prepared response plan.

Step 2: Team formation:
- Divide work for internal team (project team) into: simulation control team, logistic team, overall observer, observer for each team water, sanitation, hygiene and camp.
- Divide participants as per their task team as Management team, Water Team, Sanitation Team and Hygiene Team;
- Ask team member to select their team lead and co-lead for simulation;
- Call team lead and management team for 1st inject, declare disaster state (1st notice of Earthquake briefing) and activate disaster plan;
- Hand over VHF set to team lead and co-lead for communication;
- Ask them to prepare response plan as per situation with time limitation (15 minutes);
- Team will prepare their plan for response with action, list of materials.
- Ask team to complete all the process for logistic like: materials demand form, store issue note, material receipt note, purchase requisition.
- After completing the process and taking materials from store, proceed team for field work.

Step 3: Field work:
- Prepare for injects like: asking first report, raise question on the leadership, sending media person, sending health incharge for monitoring.
- Call management team and lead for urgent meeting with control team, provide 2nd inject i.e., making scenario worse.
- Disturb team leads and team on their work sending media person and raising question/ issues.
- Make victims ready and send the message of victims approaching to field health camp to make rush in their work.
- As per situation at field, change and create obstacles at the work and note the responses of team.

*Note: Provide lunch at field as per feasibility.

Step 4: Hot debriefing:
We can take two different methods for debriefing:

Method 1:
- Deactivate disaster state;
- Ask team lead and lead to collect all items that they have issued and submit back to logistic department;
- Gather all the participants including all team, project teams, observers, volunteers at a place;
- Ask all to share their experience;
- Ask them to point out what went well and what went off during simulation;
- Make note of each good and bad points/ points to be improved for recommendation.

Method 2:
- Deactivate disaster state;
- Visit each station: water station, sanitation station, hygiene station, camp team;
- Ask each team to share their experience of simulation;
- Ask them what went well, what went off, what would have been better if it was done;
- Make a note of all the points as recommendation;
- Ask team lead and lead to collect all items that they have issued and submit back to logistic department.

Materials required for this simulation: name tags, masking tape, marker, chart paper, loose sheet, meta card, minute, paper cutter, scale, alum, bleaching powder, wire, bamboo, layout, plastic sheet/tarpaulin sheet, rope nylon and plastic, mask, measuring tape, first aid box, triage ribbon, VHF radio, printed demand slip, store issue note, material receipt note and other WASH stockpile items.
Annex

Environment and Public Health Organization
Enhancing Health Sector Crisis Preparedness in The Event of High Intensity Earthquake in the Kathmandu Valley
Emergency WASH Preparedness training
Kathmandu, 2014

7.1 Pre-test and Post-test question

1. E-WASH plan को पूरा अर्थ के हो ?
Earthquake WASH plan, Essential WASH plan, Emergency WASH Plan

2. तपाईलाई स्वास्थ्य संस्थान आपत्कालीन खानेपानी स्वास्थ्य सरसफाई योजनाको बन्दे छ, के तपाईलाई शाहा छ?

3. उपचार (Recovery) को दुई प्रकार के छ हुन?
पुन: स्थापना, पुन: निर्माण (Recovery)

4. अल्पकाळिक प्रकारहरू के के हुनु ?(Types of Mitigation)
जनचेतनामुक्त अल्पकालिक, समाजिक अल्पकालिक,
संरचनात्मक अल्पकालिक, गैर-संरचनात्मक अल्पकालिक

5. विषय जोखिमको सुचुर भनुहोल्ड् यहकारेको या स्थायी बदलाउने व्यक्ति?

6. विषय व्यवस्थापन चक्रमा प्रक्रिया पुर्व गरिने चरणहरू वा कामहरू के के हुनु?
(क) खोज तथा उद्धार (ख) राहत (ग) पुन:निर्माण तथा पुन:स्थापना (घ) रोकथाम, नूतनीकरण र पूर्व तयारी

7. विषय मुख सम्म पुने ५ माथ्यंत्रिक मध्ये कुन होईन?

8. विषय मुख सम्म पुने नदिन अपनाउन सकिने ठेक्कारका उपयोग शौचालयको प्रयोग, सुरक्षित पानी र __________ हुनु?
9. मानिसहरू संक्रमित हुने चक पुरा गर्नुहोस्।

Host vector

10. फोहोर व्यवस्थापना सम्भावित प्रविष्टि हके के हुन्?

11. फोहोर व्यवस्थापनका चरणहरू के के हुन्?

12. इन्सिनेटरको प्रयोग गर्दा तापक्रम कति डिग्री सम्म पुगेको हुन्छ?

250 डिग्री, 500 डिग्री, 800 डिग्री, 1000 डिग्री

13. तपाईहरुको स्वास्थ्य संस्थाना भण्डारण गरिएको tap stand ना कति ओटा धारा हुन्छ?

4 ओटा, 5 ओटा, 6 ओटा

14. रसायनिक विधि अपनाउँदा — ५ बिलिबड़ पाउडर (Sodium hypochlorite), वा diluted active chlorine solution (0.5%) को प्रयोग गरिएका हुने?

0.2 ५, 0.5 ५, 1 ५, 2 ५

15. फोहोरहरू जन्मा गरेका कंटेनरहरू, फोहोर वर्गीकरण गरेका क्षेत्रको कतिमा कतिमा मिटरको दुरिमा हुनुपर्छ?

1 मिटर, 2 मिटर, 5 मिटर, 10 मिटर

16. उज को स्केल कति देखि कति सम्म हुन्छ?

pH range 0-14, pH range 1-14, pH range 1-14,

17. WHO Guideline अनुसार pH को खण्डित कति हुनुपर्छ?

WHO Guideline value 6.5- 7.5 WHO Guideline value 6.5- 8.5 WHO Guideline value 5.5- 7.5

18. क्लोरिनेशन गरेपछी Free Residual Chlorine को मात्रा कति हुन पर्छ?

0.3- 0.6 mg/lit, 0.2- 0.5 mg/lit, 0.5- 0.8 mg/lit

19. सानु पानीले हात धुने बानीले कति प्रतिसत कमि ल्याउन सकिन्छ?

545, 565, 475, 325

20. आपतकालीन अवस्थामा क्लोरिन भोला बनाउँ। १ मिटर पानीमा ४० ग्राम बिलिबड रक्षा कतित को सोल्युशन बन्ने?

1 %, 5 %, 0.5 %, 2 %
7.2 Disaster Cycle Points for Preparing DM Cycle

- Disaster
- Search and Rescue
- Before Disaster
- Preparedness
- After Disaster
- Mitigation
- Prevention
- Reconstruction
- Rehabilitation

7.3 Disaster Terminology

प्रकोप : कुनै छास निर्धारित अवधि र निर्धारित भौगोलिक क्षेत्र मित्र रहेको क्रियाकलाप, स्वरूप र प्राकृतिक कारणले हुनसकेन घटना हो जसले सम्भावित क्षति र विपदृ निम्न्यावान सक्दछ।

विषयः “त्यस्तो विपत्तिपूर्ण परिस्थिति हो, जुन परिस्थितिमा धेरैःजसो जनजीवन अकस्रमाल अस्त-व्यस्त हुन पुनर्घर। यत्सो परिस्थितिमा मानिसहरुले धेरे दुःख पाउछन् र यसको परिणामस्वरूप दुःख, खाना, आवास, लुगफाटो, औषधीपत्ता र तथा सामाजिक सेवा जस्ता मानेलाई जीवनमा नभए नहुने अन्य आवश्यकताहरूको पूर्ति गर्नु आवश्यक हुन्छ।”

सम्भावित प्रकारको असरसात हुनसकेन क्षतिको अवस्था र प्रकारको कारणले समुदायको संरचना र भौगोलिक क्षेत्रलाई पारसकार सम्भावित क्षति र अवरूढ गर्न सकेन अवस्था।

जोखिम

संकटसम्मता : खतरामा भएका र हुनसको जोखिमका तत्वहरू र जोखिमको अवस्थामा रहेका तत्वहरू भने बुफिन्न। वा तुलनात्मक सापेक्षित सङ्ग भने खम जोखिम सम्भावित प्रकारसङ्ग सामना गर्न, रोकथाम गर्न र पुनर्स्थापित हुने समेट कुनै स्रोत साधन र उपाय हुँदैन भने त्यसलाई संकटसम्मता भनिन्छ।

क्षमता : कुनै पनि व्यक्ति, संस्था, समुदायसँग भएको श्रोत, साधन, गुण र शक्तिलाई बुफिन्न, जसले तिनीहरूलाई विपदसङ्ग सामना गर्न, विपदसङ्ग अवस्थामा ल्याउन, विपदको रोकथाम तथा न्यूनिकरणका लागि मद्दत गर्दछ। वा व्यक्ति, संस्था, समुदायसँग भएका
Emergency WASH Preparedness
Training Module for Health Facilities

Swab-Path Jalsa: Tandemly conduct a rapid assessment of WASH facilities. If the assessment reveals significant gaps, remedial measures should be initiated immediately.

Rationale: To ensure the effective preparedness and response to WASH-related emergencies, it is crucial to conduct a thorough analysis of existing facilities to identify and address any gaps.

Exercise: Consider a scenario where a health facility is facing an unexpected increase in demand for WASH services. The facility must assess its current WASH infrastructure to ensure it can meet the needs of the population. If gaps are identified, immediate interventions are necessary to maintain hygiene and prevent the spread of diseases.

def

\[\text{Preparedness} = \frac{\text{Practical Preparedness}}{\text{Expected Preparedness}} \times 100 \]

class

Exercise: In the event of a sudden increase in patient influx due to a natural disaster, the facility must ensure that its WASH facilities are well-equipped to handle the situation. This includes ensuring adequate supplies of water, sanitation, and hygiene materials.

Observations: Evaluate the effectiveness of the preparedness measures by comparing the observed outcomes with the expected outcomes. This will help in identifying areas for improvement.

Conclusion: The preparedness assessment is a critical component of ensuring the continuity of health services during emergencies. Regular assessments and timely interventions are essential to maintain the quality of care.
पुनस्थापित : खतरा ठूलो उच्चतम स्तर, ठूलो आयाम वा वस्तुको गराउने।

पुनर्निर्माण : पहिलाइ ठूलो अथवा अन्य सुरक्षित ठूलो स्थान निर्माण गरी वसाउने कार्य।

विविध व्यवस्थापन : विविध सम्बन्धित सबै पक्षहरू समावेश भएको एउटा सामान्यको अवघातको हो। यसले विविध को जोखिम र परिणाम दुबै को व्यवस्थापनलाई सम्बन्ध गर्दै हुनेछ।

<table>
<thead>
<tr>
<th>प्रकोप</th>
<th>Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>विद्रूप</td>
<td>Disaster</td>
</tr>
<tr>
<td>जोखिम</td>
<td>Risk</td>
</tr>
<tr>
<td>सक्रियतासम्बन्ध, सक्रियतासम्बन्ध</td>
<td>Vulnerability, Vulnerable</td>
</tr>
<tr>
<td>क्षमता</td>
<td>Capacity</td>
</tr>
<tr>
<td>सक्रियतासम्बन्ध समूह</td>
<td>Vulnerable group</td>
</tr>
<tr>
<td>उच्चमानशीलता, उच्चमानशीलता</td>
<td>Resilience /Resilient</td>
</tr>
<tr>
<td>प्रतिरोधी, प्रतिरोध</td>
<td>Resistant /Resistance</td>
</tr>
<tr>
<td>पूर्वकर्म</td>
<td>Fore Shocks /Pre-shocks</td>
</tr>
<tr>
<td>पकर्म</td>
<td>After shocks</td>
</tr>
<tr>
<td>प्रबलकर्म</td>
<td>Retrofitting</td>
</tr>
<tr>
<td>सचिवकर्म</td>
<td>Reinforcing</td>
</tr>
<tr>
<td>अन्तीकरण</td>
<td>Mitigation</td>
</tr>
<tr>
<td>नयनीकरण</td>
<td>Reduction</td>
</tr>
<tr>
<td>निर्माण संहिता</td>
<td>Building code</td>
</tr>
<tr>
<td>दिग्गज विकास</td>
<td>Sustainable Development</td>
</tr>
<tr>
<td>आपतकाल</td>
<td>Emergency</td>
</tr>
<tr>
<td>संरचनात्मक</td>
<td>Structural</td>
</tr>
<tr>
<td>गैर-संरचनात्मक</td>
<td>Non-Structural</td>
</tr>
<tr>
<td>आवश्यकताको पहिचान</td>
<td>Need Assessments</td>
</tr>
<tr>
<td>राहत</td>
<td>Relief</td>
</tr>
<tr>
<td>पुनर्निर्माण</td>
<td>Recovery</td>
</tr>
<tr>
<td>रोकथाम</td>
<td>Prevention</td>
</tr>
<tr>
<td>जन चेतना</td>
<td>Public Awareness</td>
</tr>
<tr>
<td>तीव्रता</td>
<td>Intensity</td>
</tr>
<tr>
<td>सक्रियतासम्बन्ध-क्षमताको विश्लेषण</td>
<td>Vulnerability/ Capacity Analysis</td>
</tr>
<tr>
<td>पूर्व-चेतानी</td>
<td>Early Warnings</td>
</tr>
<tr>
<td>जोखिम नयनीकरण</td>
<td>Risk Reduction</td>
</tr>
<tr>
<td>जोखिम विश्लेषण</td>
<td>Risk Analysis</td>
</tr>
<tr>
<td>विविध जोखिम नयनीकरण</td>
<td>Disaster Risk Reduction</td>
</tr>
<tr>
<td>पूर्ववर्तमानी</td>
<td>Preparedness</td>
</tr>
<tr>
<td>प्रतिकार्य</td>
<td>Response</td>
</tr>
<tr>
<td>सामना क्षमता</td>
<td>Coping Capacity</td>
</tr>
<tr>
<td>“फटपट भोला”</td>
<td>Earthquake “Go Bag”</td>
</tr>
<tr>
<td>ढुंढा टेक गुंडुल्क, आट लाग समान</td>
<td>Duck, Cover and Hold</td>
</tr>
</tbody>
</table>